1. Ehsanifar, M., Z. Yavari, and M. Rafati, Exposure to urban air pollution particulate matter: neurobehavioral alteration and hippocampal inflammation. Environmental Science and Pollution Research, 2022: p. 1-11. [ DOI:10.1007/s11356-022-19367-9] 2. Ehsanifar, M., et al., Learning and memory disorders related to hippocampal inflammation following exposure to air pollution. Journal of Environmental Health Science and Engineering, 2021. [ DOI:10.1007/s40201-020-00600-x] 3. Ehsanifar, M., et al., Hippocampal inflammation and oxidative stress following exposure to Diesel exhaust nanoparticles in male and female mice. Neurochemistry International, 2021: p. 104989. [ DOI:10.1016/j.neuint.2021.104989] 4. Ehsanifar, M., et al., Prenatal exposure to diesel exhaust particles causes anxiety, spatial memory disorders with alters expression of hippocampal pro-inflammatory cytokines and NMDA receptor subunits in adult male mice offspring. Ecotoxicology and Environmental Safety, 2019. 176: p. 34-41. [ DOI:10.1016/j.ecoenv.2019.03.090] 5. Niu, Q., Overview of the relationship between aluminum exposure and health of human being. Neurotoxicity of Aluminum, 2018: p. 1-31. [ DOI:10.1007/978-981-13-1370-7_1] 6. Krewski, D., et al., Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. Journal of Toxicology and Environmental Health, Part B, 2007. 10(S1): p. 1-269. [ DOI:10.1080/10937400701597766] 7. Riihimäki, V. and A. Aitio, Occupational exposure to aluminum and its biomonitoring in perspective. Critical reviews in toxicology, 2012. 42(10): p. 827-853. [ DOI:10.3109/10408444.2012.725027] 8. Yang, X., et al., The relationship between cognitive impairment and global DNA methylation decrease among aluminum potroom workers. Journal of occupational and environmental medicine, 2015. 57(7): p. 713-717. [ DOI:10.1097/JOM.0000000000000474] 9. Wang, S., et al., The relationship between plasma Al levels and multi-domain cognitive performance among in-service aluminum-exposed workers at the SH aluminum factory in China: a cross-sectional study. Neurotoxicology, 2020. 76: p. 144-152. [ DOI:10.1016/j.neuro.2019.10.011] 10. Wang, J.-Z. and Z.-H. Wang, Senescence may mediate conversion of tau phosphorylation-induced apoptotic escape to neurodegeneration. Experimental gerontology, 2015. 68: p. 82-86. [ DOI:10.1016/j.exger.2015.03.007] 11. Grundke-Iqbal, I., et al., Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences, 1986. 83(13): p. 4913-4917. [ DOI:10.1073/pnas.83.13.4913] 12. Gunnarsson, M.D., et al., High tau levels in cerebrospinal fluid predict rapid decline and increased dementia mortality in Alzheimer's disease. Dementia and geriatric cognitive disorders, 2014. 37(3-4): p. 196-206. [ DOI:10.1159/000355556] 13. Ehsanifar, M., Z. Montazeri, and M. Rafati, Alzheimer's Disease-Like Neuropathology Following Exposure to Ambient Noise. 2021. [ DOI:10.37871/jbres1364] 14. Lu, X., et al., Cognitive disorders and tau-protein expression among retired aluminum smelting workers. Journal of occupational and environmental medicine, 2014. 56(2): p. 155-160. [ DOI:10.1097/JOM.0000000000000100] 15. Sjögren, B., et al., Effects on the nervous system among welders exposed to aluminum and manganese. Occupational and environmental medicine, 1996. 53(1): p. 32-40. [ DOI:10.1136/oem.53.1.32] 16. Meyer-Baron, M., et al., Occupational aluminum exposure: evidence in support of its neurobehavioral impact. Neurotoxicology, 2007. 28(6): p. 1068-1078. [ DOI:10.1016/j.neuro.2007.07.001] 17. Polizzi, S., et al., Neurotoxic effects of aluminum among foundry workers and Alzheimer's disease. Neurotoxicology, 2002. 23(6): p. 761-774. [ DOI:10.1016/S0161-813X(02)00097-9] 18. Bergdahl, I.A. and S. Skerfving, Biomonitoring of lead exposure-alternatives to blood. Journal of Toxicology and Environmental Health, Part A, 2008. 71(18): p. 1235-1243. [ DOI:10.1080/15287390802209525] 19. Buchta, M., et al., Longitudinal study examining the neurotoxicity of occupational exposure to aluminium-containing welding fumes. International archives of occupational and environmental health, 2003. 76(7): p. 539-548. [ DOI:10.1007/s00420-003-0450-9] 20. Dage, J.L., et al., Levels of tau protein in plasma are associated with neurodegeneration and cognitive function in a population-based elderly cohort. Alzheimer's & Dementia, 2016. 12(12): p. 1226-1234. [ DOI:10.1016/j.jalz.2016.06.001] 21. Reddy, P.H., Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer's disease. Brain research, 2011. 1415: p. 136-148. [ DOI:10.1016/j.brainres.2011.07.052] 22. Kandimalla, R., et al., Hippocampal phosphorylated tau induced cognitive decline, dendritic spine loss and mitochondrial abnormalities in a mouse model of Alzheimer's disease. Human molecular genetics, 2018. 27(1): p. 30-40. [ DOI:10.1093/hmg/ddx381] 23. Nathan, P.J., et al., Association between CSF biomarkers, hippocampal volume and cognitive function in patients with amnestic mild cognitive impairment (MCI). Neurobiology of Aging, 2017. 53: p. 1-10. [ DOI:10.1016/j.neurobiolaging.2017.01.013] 24. Seppälä, T.T., et al., Longitudinal changes of CSF biomarkers in Alzheimer's disease. Journal of Alzheimer's Disease, 2011. 25(4): p. 583-594. [ DOI:10.3233/JAD-2011-101911] 25. Crapper, D., S. Krishnan, and A. Dalton, Brain aluminum distribution in Alzheimer's disease and experimental neurofibrillary degeneration. Science, 1973. 180(4085): p. 511-513. [ DOI:10.1126/science.180.4085.511] 26. Zhao, H.-h., et al., Involvement of GSK3 and PP2A in ginsenoside Rb1's attenuation of aluminum-induced tau hyperphosphorylation. Behavioural brain research, 2013. 241: p. 228-234. [ DOI:10.1016/j.bbr.2012.11.037] 27. Walton, J., Evidence for participation of aluminum in neurofibrillary tangle formation and growth in Alzheimer's disease. Journal of Alzheimer's Disease, 2010. 22(1): p. 65-72. [ DOI:10.3233/JAD-2010-100486] 28. Walton, J., Aluminum disruption of calcium homeostasis and signal transduction resembles change that occurs in aging and Alzheimer's disease. Journal of Alzheimer's Disease, 2012. 29(2): p. 255-273. [ DOI:10.3233/JAD-2011-111712] 29. Giannakopoulos, P., et al., Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. Neurology, 2003. 60(9): p. 1495-1500. [ DOI:10.1212/01.WNL.0000063311.58879.01] 30. Fagan, A.M. and R.J. Perrin, Upcoming candidate cerebrospinal fluid biomarkers of Alzheimer's disease. Biomarkers in medicine, 2012. 6(4): p. 455-476. [ DOI:10.2217/bmm.12.42] 31. Chiu, M.J., et al., Plasma tau as a window to the brain-negative associations with brain volume and memory function in mild cognitive impairment and early alzheimer's disease. Human brain mapping, 2014. 35(7): p. 3132-3142. [ DOI:10.1002/hbm.22390] 32. Chen, T.-B., et al., Plasma Aβ42 and total tau predict cognitive decline in amnestic mild cognitive impairment. Scientific Reports, 2019. 9(1): p. 1-10. [ DOI:10.1038/s41598-019-50315-9]
|