1- Assistant Professor of Medical Genetics, Department of Physiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran 2- Assistant Professor of Anatomical Sciences, Department of Anatomical Sciences, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran , navidshadan@gmail.com
Abstract: (102 Views)
Background and purpose: The selection of oocytes with optimal developmental potential can significantly improve the overall success rates of in vitro fertilization (IVF). This is particularly crucial in countries where legal, cultural, or religious constraints limit the generation of surplus embryos. This systematic review aimed to assess the association between oocyte morphological characteristics and IVF/ICSI outcomes. Materials and methods: This review was conducted in accordance with the PRISMA guidelines. A comprehensive literature search was performed using electronic databases including MEDLINE, ISI Web of Knowledge, Science Citation Index, Cochrane Controlled Trials Register, and Ovid. Only English-language studies were included, and case reports were excluded. Inclusion/exclusion criteria, study screening processes, and quality assessment protocols were clearly defined and implemented. The keywords used in the search were also listed as article keywords. Results:Findings indicate that specific morphological features of oocytes—such as zona pellucida thickness, homogeneity of central cytoplasmic granulation, and presence of a meiotic spindle detectable via polarized light microscopy—are positively associated with higher success rates in IVF/ICSI. However, characteristics such as the shape of the polar body and the perivitelline space yielded inconsistent results across studies. These observations suggest a predictive potential for certain morphological markers, although the lack of standardized assessment criteria remains a major limitation Conclusion: Morphological assessment of oocytes appears to be a useful tool for selecting high-quality oocytes and improving IVF outcomes. Nevertheless, further research is required to standardize evaluation criteria and validate their predictive value across broader clinical settings.
Type of Study: Review |
Subject: General Received: 2025/04/16 | Accepted: 2025/06/4 | Published: 2025/06/8
References
1. Cummins J, Breen T, Harrison K, Shaw J, Wilson L, Hennessey J. A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality. Journal of In Vitro Fertilization and Embryo Transfer. 1986;3:284-95. [DOI:10.1007/BF01133388] [PMID]
2. Emiliani S, Fasano G, Vandamme B, Vannin A-S, Verdoodt M, Biramane J, et al. Impact of the assessment of early cleavage in a single embryo transfer policy. Reproductive biomedicine online. 2006;13(2):255-60. [DOI:10.1016/S1472-6483(10)60623-2] [PMID]
3. Arav A, Aroyo A, Yavin S, Roth Z. Prediction of embryonic developmental competence by time-lapse observation and 'shortest-half'analysis. Reproductive biomedicine online. 2008;17(5):669-75. [DOI:10.1016/S1472-6483(10)60314-8] [PMID]
4. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Human reproduction update. 2008;14(2):159-77. [DOI:10.1093/humupd/dmm040] [PMID]
5. Moghadam ARE, Moghadam MT, Hemadi M, Saki G. Oocyte quality and aging. JBRA assisted reproduction. 2022;26(1):105. [DOI:10.5935/1518-0557.20210026]
6. Navid S, Saadatian Z, Talebi A. Assessment of developmental rate of mouse embryos yielded from in vitro fertilization of the oocyte with treatment of melatonin and vitamin C simultaneously. BMC Women's Health. 2023;23(1):525. [DOI:10.1186/s12905-023-02673-w] [PMID] []
7. Sciorio R, Cariati F, Fleming S, Alviggi C. Exploring the impact of controlled ovarian stimulation and non-invasive oocyte assessment in ART treatments. Life. 2023;13(10):1989. [DOI:10.3390/life13101989] [PMID] []
8. Manshadi MD, Navid S, Hoshino Y, Daneshi E, Noory P, Abbasi M. The effects of human menstrual blood stem cells‐derived granulosa cells on ovarian follicle formation in a rat model of premature ovarian failure. Microscopy research and technique. 2019;82(6):635-42. [DOI:10.1002/jemt.23120] [PMID]
9. Noory P, Navid S, Zanganeh BM, Talebi A, Borhani-Haghighi M, Gholami K, et al. Human menstrual blood stem cell-derived granulosa cells participate in ovarian follicle formation in a rat model of premature ovarian failure in vivo. Cellular Reprogramming. 2019;21(5):249-59. [DOI:10.1089/cell.2019.0020] [PMID]
10. Swann KM. Effects of ovarian stimulation on oocyte development and embryo quality: University of Nottingham; 2014.
11. Richani D, Dunning KR, Thompson JG, Gilchrist RB. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. Human reproduction update. 2021;27(1):27-47. [DOI:10.1093/humupd/dmaa043] [PMID]
12. Sciorio R, Miranian D, Smith GD. Non-invasive oocyte quality assessment. Biology of Reproduction. 2022;106(2):274-90. [DOI:10.1093/biolre/ioac009] [PMID]
13. Hernández-Vargas P, Muñoz M, Domínguez F. Identifying biomarkers for predicting successful embryo implantation: applying single to multi-OMICs to improve reproductive outcomes. Human reproduction update. 2020;26(2):264-301. [DOI:10.1093/humupd/dmz042] [PMID]
14. Patrizio P, Fragouli E, Bianchi V, Borini A, Wells D. Molecular methods for selection of the ideal oocyte. Reproductive biomedicine online. 2007;15(3):346-53. [DOI:10.1016/S1472-6483(10)60349-5] [PMID]
15. Przewocki J, Kossiński D, Łukaszuk A, Jakiel G, Wocławek-Potocka I, Ołdziej S, et al. Follicular Fluid Proteomic Analysis to Identify Predictive Markers of Normal Embryonic Development. International Journal of Molecular Sciences. 2024;25(15):8431. [DOI:10.3390/ijms25158431] [PMID] []
16. Rattanachaiyanont M, Leader A, Léveillé M-C. Lack of correlation between oocyte-corona-cumulus complex morphology and nuclear maturity of oocytes collected in stimulated cycles for intracytoplasmic sperm injection. Fertility and sterility. 1999;71(5):937-40. [DOI:10.1016/S0015-0282(99)00100-4] [PMID]
17. Ebner T, Moser M, Shebl O, Sommergruber M, Yaman C, Tews G. Blood clots in the cumulus-oocyte complex predict poor oocyte quality and post-fertilization development. Reproductive biomedicine online. 2008;16(6):801-7. [DOI:10.1016/S1472-6483(10)60145-9] [PMID]
18. Lin Y-C, Chang S-Y, Lan K-C, Huang H-W, Chang C-Y, Tsai M-Y, et al. Human oocyte maturity in vivo determines the outcome of blastocyst development in vitro. Journal of assisted reproduction and genetics. 2003;20:506-12. [DOI:10.1023/B:JARG.0000013651.37866.0c] [PMID] []
19. Ng ST, Chang T-H, Wu TJ. Prediction of the rates of fertilization, cleavage, and pregnancy success by cumulus-coronal morphology in an in vitro fertilization program. Fertility and Sterility. 1999;72(3):412-7. [DOI:10.1016/S0015-0282(99)00290-3] [PMID]
20. Salumets A, Suikkari A-M, Möls T, Söderström-Anttila V, Tuuri T. Influence of oocytes and spermatozoa on early embryonic development. Fertility and sterility. 2002;78(5):1082-7. [DOI:10.1016/S0015-0282(02)04215-2] [PMID]
21. Sutter PD, Dozortsev D, Qian C, Dhont M. Oocyte morphology does not correlate with fertilization rate and embryo quality after intracytoplasmic sperm injection. Human Reproduction. 1996;11(3):595-7. [DOI:10.1093/HUMREP/11.3.595] [PMID]
22. Ten J, Mendiola J, Vioque J, De Juan J, Bernabeu R. Donor oocyte dysmorphisms and their influence on fertilization and embryo quality. Reproductive biomedicine online. 2007;14(1):40-8. [DOI:10.1016/S1472-6483(10)60762-6] [PMID]
23. Balaban B, Ata B, Isiklar A, Yakin K, Urman B. Severe cytoplasmic abnormalities of the oocyte decrease cryosurvival and subsequent embryonic development of cryopreserved embryos. Human reproduction. 2008;23(8):1778-85. [DOI:10.1093/humrep/den127] [PMID]
24. Esfandiari N, Burjaq H, Gotlieb L, Casper RF. Brown oocytes: implications for assisted reproductive technology. Fertility and sterility. 2006;86(5):1522-5. [DOI:10.1016/j.fertnstert.2006.03.056] [PMID]
25. Rienzi L, Ubaldi FM, Iacobelli M, Minasi MG, Romano S, Ferrero S, et al. Significance of metaphase II human oocyte morphology on ICSI outcome. Fertility and sterility. 2008;90(5):1692-700. [DOI:10.1016/j.fertnstert.2007.09.024] [PMID]
26. Bertrand E, Van Den Bergh M, Englert Y. Does zona pellucida thickness influence the fertilization.
27. Raju GR, Prakash G, Krishna KM, Madan K. Meiotic spindle and zona pellucida characteristics as predictors of embryonic development: a preliminary study using PolScope imaging. Reproductive biomedicine online. 2007;14(2):166-74. [DOI:10.1016/S1472-6483(10)60784-5] [PMID]
28. Shen Y, Stalf T, Mehnert C, Eichenlaub-Ritter U, Tinneberg H-R. High magnitude of light retardation by the zona pellucida is associated with conception cycles. Human Reproduction. 2005;20(6):1596-606. [DOI:10.1093/humrep/deh811] [PMID]
29. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertility and sterility. 2015;103(2):303-16. [DOI:10.1016/j.fertnstert.2014.11.015] [PMID]
30. Gupta SK. The human egg's zona pellucida. Current topics in developmental biology. 2018;130:379-411. [DOI:10.1016/bs.ctdb.2018.01.001] [PMID]
31. Braga DPdAF, Figueira RdCS, Queiroz P, Madaschi C, Iaconelli Jr A, Borges Jr E. Zona pellucida birefringence in in vivo and in vitro matured oocytes. Fertility and sterility. 2010;94(6):2050-3. [DOI:10.1016/j.fertnstert.2009.12.005] [PMID]
32. Aguila L, Treulen F, Therrien J, Felmer R, Valdivia M, Smith LC. Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence. Animals. 2020;10(12):2196. [DOI:10.3390/ani10122196] [PMID] []
33. Loutradis D, Drakakis P, Kallianidis K, Milingos S, Dendrinos S, Michalas S. Oocyte morphology correlates with embryo quality and pregnancy rate after intracytoplasmic sperm injection. Fertility and sterility. 1999;72(2):240-4. [DOI:10.1016/S0015-0282(99)00233-2] [PMID]
34. Rienzi L, Vajta G, Ubaldi F. Predictive value of oocyte morphology in human IVF: a systematic review of the literature. Human reproduction update. 2011;17(1):34-45. [DOI:10.1093/humupd/dmq029] [PMID] []
35. Shi W, Xu B, Wu L-M, Jin R-T, Luan H-B, Luo L-H, et al. Oocytes with a dark zona pellucida demonstrate lower fertilization, implantation and clinical pregnancy rates in IVF/ICSI cycles. PloS one. 2014;9(2):e89409. [DOI:10.1371/journal.pone.0089409] [PMID] []
36. Xu H, Deng K, Luo Q, Chen J, Zhang X, Wang X, et al. High serum FSH is associated with brown oocyte formation and a lower pregnacy rate in human IVF parctice. Cellular Physiology and Biochemistry. 2016;39(2):677-84. [DOI:10.1159/000445658] [PMID]
37. Balaban B, Urman B, Sertac A, Alatas C, Aksoy S, Mercan R. Oocyte morphology does not affect fertilization rate, embryo quality and implantation rate after intracytoplasmic sperm injection. Human reproduction (Oxford, England). 1998;13(12):3431-3. [DOI:10.1093/humrep/13.12.3431] [PMID]
38. Chamayou S, Ragolia C, Alecci C, Storaci G, Maglia E, Russo E, et al. Meiotic spindle presence and oocyte morphology do not predict clinical ICSI outcomes: a study of 967 transferred embryos. Reproductive biomedicine online. 2006;13(5):661-7. [DOI:10.1016/S1472-6483(10)60656-6] [PMID]
39. Farhi J, Nahum H, Weissman A, Zahalka N, Glezerman M, Levran D. Coarse granulation in the perivitelline space and IVF-ICSI outcome. Journal of Assisted Reproduction and Genetics. 2002;19:545-9. [DOI:10.1023/A:1021243530358] [PMID] []
40. Hassan-Ali H, Hisham-Saleh A, El-Gezeiry D, Baghdady I, Ismaeil I, Mandelbaum J. Perivitelline space granularity: a sign of human menopausal gonadotrophin overdose in intracytoplasmic sperm injection. Human reproduction (Oxford, England). 1998;13(12):3425-30. [DOI:10.1093/humrep/13.12.3425] [PMID]
41. Nikiforov D, Grøndahl ML, Hreinsson J, Andersen CY. Human oocyte morphology and outcomes of infertility treatment: a systematic review. Reproductive Sciences. 2022;29(10):2768-85. [DOI:10.1007/s43032-021-00723-y] [PMID]
42. Verlinsky Y, Lerner S, Illkevitch N, Kuznetsov V, Kuznetsov I, Cieslak J, et al. Is there any predictive value of first polar body morphology for embryo genotype or developmental potential? Reproductive BioMedicine Online. 2003;7(3):336-41. [DOI:10.1016/S1472-6483(10)61874-3] [PMID]
43. Ciotti P, Notarangelo L, Morselli-Labate A, Felletti V, Porcu E, Venturoli S. First polar body morphology before ICSI is not related to embryo quality or pregnancy rate. Human Reproduction. 2004;19(10):2334-9. [DOI:10.1093/humrep/deh433] [PMID]
44. Zhou W, Fu L, Sha W, Chu D, Li Y. Relationship of polar bodies morphology to embryo quality and pregnancy outcome. Zygote. 2016;24(3):401-7. [DOI:10.1017/S0967199415000325] [PMID]
45. Ebner T, Yaman C, Moser M, Sommergruber M, Feichtinger O, Tews G. Prognostic value of first polar body morphology on fertilization rate and embryo quality in intracytoplasmic sperm injection. Human Reproduction. 2000;15(2):427-30. [DOI:10.1093/humrep/15.2.427] [PMID]
46. Navarro PA, de Araújo MM, de Araújo CM, Rocha M, dos Reis R, Martins W. Relationship between first polar body morphology before intracytoplasmic sperm injection and fertilization rate, cleavage rate, and embryo quality. International Journal of Gynecology & Obstetrics. 2009;104(3):226-9. [DOI:10.1016/j.ijgo.2008.11.008] [PMID]
47. Fancsovits P, G. Tóthné Z, Murber A, Takacs F, Papp Z, Urbancsek J. Correlation between first polar body morphology and further embryo development. Acta Biologica Hungarica. 2006;57(3):331-8. [DOI:10.1556/ABiol.57.2006.3.7] [PMID]
48. Ozturk S. Selection of competent oocytes by morphological criteria for assisted reproductive technologies. Molecular Reproduction and Development. 2020;87(10):1021-36. [DOI:10.1002/mrd.23420] [PMID]
49. Yakin K, Balaban B, Isiklar A, Urman B. Oocyte dysmorphism is not associated with aneuploidy in the developing embryo. Fertility and sterility. 2007;88(4):811-6. [DOI:10.1016/j.fertnstert.2006.12.031] [PMID]
50. Ebner T, Shebl O, Moser M, Sommergruber M, Tews G. Developmental fate of ovoid oocytes. Human Reproduction. 2008;23(1):62-6. [DOI:10.1093/humrep/dem280] [PMID]
51. Rosenbusch B, Schneider M, Gläser B, Brucker C. Cytogenetic analysis of giant oocytes and zygotes to assess their relevance for the development of digynic triploidy. Human Reproduction. 2002;17(9):2388-93. [DOI:10.1093/humrep/17.9.2388] [PMID]
52. Balakier H, Bouman D, Sojecki A, Librach C, Squire JA. Morphological and cytogenetic analysis of human giant oocytes and giant embryos. Human Reproduction. 2002;17(9):2394-401. [DOI:10.1093/humrep/17.9.2394] [PMID]
53. Bartolacci A, Intra G, Coticchio G, dell'Aquila M, Patria G, Borini A. Does morphological assessment predict oocyte developmental competence? A systematic review and proposed score. Journal of assisted reproduction and genetics. 2022:1-15. [DOI:10.1007/s10815-021-02370-3] [PMID] []
54. Rienzi L, Balaban B, Ebner T, Mandelbaum J. The oocyte. Human reproduction. 2012;27(suppl_1):i2-i21. [DOI:10.1093/humrep/des200] [PMID]
55. Fluks M, Milewski R, Tamborski S, Szkulmowski M, Ajduk A. Spindle shape and volume differ in high-and low-quality metaphase II oocytes. Reproduction. 2024;167(4). [DOI:10.1530/REP-23-0281] [PMID]
56. Wilding M, Di Matteo L, D'Andretti S, Montanaro N, Capobianco C, Dale B. An oocyte score for use in assisted reproduction. Journal of Assisted Reproduction and Genetics. 2007;24:350-8. [DOI:10.1007/s10815-007-9143-8] [PMID] []
57. Trebichalská Z, Kyjovská D, Kloudová S, Otevřel P, Hampl A, Holubcová Z. Cytoplasmic maturation in human oocytes: an ultrastructural study. Biology of Reproduction. 2021;104(1):106-16. [DOI:10.1093/biolre/ioaa174] [PMID] []
58. Otsuki J, Okada A, Morimoto K, Nagai Y, Kubo H. The relationship between pregnancy outcome and smooth endoplasmic reticulum clusters in MII human oocytes. Human Reproduction. 2004;19(7):1591-7. [DOI:10.1093/humrep/deh258] [PMID]
59. Otsuki J, Nagai Y, Chiba K. Lipofuscin bodies in human oocytes as an indicator of oocyte quality. Journal of Assisted Reproduction and Genetics. 2007;24:263-70. [DOI:10.1007/s10815-007-9130-0] [PMID] []
60. Rienzi L, Ubaldi F, Martinez F, Iacobelli M, Minasi M, Ferrero S, et al. Relationship between meiotic spindle location with regard to the polar body position and oocyte developmental potential after ICSI. Human Reproduction. 2003;18(6):1289-93. [DOI:10.1093/humrep/deg274] [PMID]
61. Kahraman S, Yakın K, Dönmez E, Şamlı H, Bahce M, Cengiz G, et al. Relationship between granular cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Human reproduction. 2000;15(11):2390-3. [DOI:10.1093/humrep/15.11.2390] [PMID]
62. Ashrafi M, Karimian L, Eftekhari‐Yazdi P, Hasani F, Arabipoor A, Bahmanabadi A, et al. Effect of oocyte dysmorphisms on intracytoplasmic sperm injection cycle outcomes in normal ovarian responders. Journal of Obstetrics and Gynaecology Research. 2015;41(12):1912-20. [DOI:10.1111/jog.12818] [PMID]
63. Fang C, Tang M, Li T, Peng W-L, Zhou C-Q, Zhuang G-L, et al. Visualization of meiotic spindle and subsequent embryonic development in in vitro and in vivo matured human oocytes. Journal of assisted reproduction and genetics. 2007;24:547-51. [DOI:10.1007/s10815-007-9171-4] [PMID] []
64. Madaschi C, de Souza Bonetti TC, Braga DPdAF, Pasqualotto FF, Iaconelli Jr A, Borges Jr E. Spindle imaging: a marker for embryo development and implantation. Fertility and sterility. 2008;90(1):194-8. [DOI:10.1016/j.fertnstert.2007.05.071] [PMID]
65. Galli M, Morgan DO. Cell size determines the strength of the spindle assembly checkpoint during embryonic development. Developmental cell. 2016;36(3):344-52. [DOI:10.1016/j.devcel.2016.01.003] [PMID] []
66. Howe K, FitzHarris G. Recent insights into spindle function in mammalian oocytes and early embryos. Biology of reproduction. 2013;89(3):71, 1-9. [DOI:10.1095/biolreprod.113.112151] [PMID]
67. Cohen Y, Malcov M, Schwartz T, Mey‐Raz N, Carmon A, Cohen T, et al. Spindle imaging: a new marker for optimal timing of ICSI? Human Reproduction. 2004;19(3):649-54. [DOI:10.1093/humrep/deh113] [PMID]
68. Cooke S, Tyler J, Driscoll G. Meiotic spindle location and identification and its effect on embryonic cleavage plane and early development. Human Reproduction. 2003;18(11):2397-405. [DOI:10.1093/humrep/deg447] [PMID]
69. Moon JH, Hyun CS, Lee SW, Son WY, Yoon SH, Lim JH. Visualization of the metaphase II meiotic spindle in living human oocytes using the Polscope enables the prediction of embryonic developmental competence after ICSI. Human Reproduction. 2003;18(4):817-20. [DOI:10.1093/humrep/deg165] [PMID]
70. Tomari H, Honjo K, Kunitake K, Aramaki N, Kuhara S, Hidaka N, et al. Meiotic spindle size is a strong indicator of human oocyte quality. Reproductive medicine and biology. 2018;17(3):268-74. [DOI:10.1002/rmb2.12100] [PMID] []
71. Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Human reproduction update. 2008;14(5):431-46. [DOI:10.1093/humupd/dmn025] [PMID]
72. Campos G, Sciorio R, Esteves SC. Total fertilization failure after ICSI: insights into pathophysiology, diagnosis, and management through artificial oocyte activation. Human reproduction update. 2023;29(4):369-94. [DOI:10.1093/humupd/dmad007] [PMID]
73. La Sala GB, Nicoli A, Villani MT, Di Girolamo R, Capodanno F, Blickstein I. The effect of selecting oocytes for insemination and transferring all resultant embryos without selection on outcomes of assisted reproduction. Fertility and sterility. 2009;91(1):96-100. [DOI:10.1016/j.fertnstert.2007.11.010] [PMID]
74. Petersen C, Oliveira J, Mauri A, Massaro F, Baruffi R, Pontes A, et al. Relationship between visualization of meiotic spindle in human oocytes and ICSI outcomes: a meta-analysis. Reproductive biomedicine online. 2009;18(2):235-43. [DOI:10.1016/S1472-6483(10)60261-1] [PMID]
Saadatian Z, Navid S. (2025). A Systematic Review of Oocyte Morphological Features and Their Association with In Vitro Fertilization (IVF/ICSI) Outcomes. Health Res Develop. 3(2), 29-43. URL: http://jhrd.trjums.ac.ir/article-1-106-en.html