1. Pontone G, Andreini D, Guaricci AI, Baggiano A, Fazzari F, Guglielmo M, et al. Incremental diagnostic value of stress computed tomography myocardial perfusion with whole-heart coverage CT scanner in intermediate-to high-risk symptomatic patients suspected of coronary artery disease. JACC: Cardiovascular Imaging. 2019;12(2):338-49. [ DOI:10.1016/j.jcmg.2017.10.025] [ PMID] 2. Pessoa-Amorim G, Camm CF, Gajendragadkar P, De Maria GL, Arsac C, Laroche C, et al. Admission of patients with STEMI since the outbreak of the COVID-19 pandemic: a survey by the European Society of Cardiology. Eur Heart J Qual Care Clin Outcomes. 2020;6(3):210-6. [ DOI:10.1093/ehjqcco/qcaa046] [ PMID] [ ] 3. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596-e646. [ DOI:10.1161/CIR.0000000000000725] 4. Otsuka R, Miyazaki Y, Kubo N, Kawahara M, Takaesu J, Fukuchi K. The Status of Stress Myocardial Perfusion Imaging Using 99mTc Pharmaceuticals in Japan. Aisa Ocean J Nucl Med Biol.2018;6:90-96. 5. Frișan AC, Mornoș C, Lazăr MA, Șoșdean R, Crișan S, Ionac I, Luca CT. Echocardiographic Myocardial Work: A Novel Method to Assess Left Ventricular Function in Patients with Coronary Artery Disease and Diabetes Mellitus. Medicina (Kaunas). 2024;60(2):199 [ DOI:10.3390/medicina60020199] [ PMID] [ ] 6. Ralapanawa U., Sivakanesan R. Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome: A narrative review. J. Epidemiol. Glob. Health. 2021;11:169-177. [ DOI:10.2991/jegh.k.201217.001] [ PMID] [ ] 7. Kenny H.C., Abel E.D. Heart Failure in Type 2 Diabetes Mellitus. Circ. Res. 2019;124:121-141. [ DOI:10.1161/CIRCRESAHA.118.311371] [ PMID] [ ] 8. Bastos M.B., Burkhoff D., Maly J., Daemen J., den Uil C.A., Ameloot K., et al. Invasive left ventricle pressure-volume analysis: Overview and practical clinical implications. Eur. Heart J. 2020;41:1286-1297. [ DOI:10.1093/eurheartj/ehz552] [ PMID] [ ] 9. Hada M, Hoshino M, Sugiyama T, Kanaji Y, Usui E, Hanyu Y, et al. Diagnostic value of computed tomography myocardial perfusion imaging to detect coexisting microvascular dysfunction in patients with obstructive epicardial coronary artery disease. Quant Imaging Med Surg. 2023;13(12):8423-8434. [ DOI:10.21037/qims-23-618] [ PMID] [ ] 10. Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Hutt Centeno E, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet. 2018 Sep 15;392(10151):929-939. [ DOI:10.1016/S0140-6736(18)31114-0] [ PMID] 11. Abawi D., Rinaldi T., Faragli A., Pieske B., Morris D.A., Kelle S., Tschöpe C., Zito C., Alogna A. The non-invasive assessment of myocardial work by pressure-strain analysis: Clinical applications. Heart Fail. Rev. 2022;27:1261-1279. [ DOI:10.1007/s10741-021-10119-4] [ PMID] [ ] 12. Li DL, Kronenberg MW. Myocardial Perfusion and Viability Imaging in Coronary Artery Disease: Clinical Value in Diagnosis, Prognosis, and Therapeutic Guidance. Am J Med. 2021;134(8):968-975. [ DOI:10.1016/j.amjmed.2021.03.011] [ PMID] 13. Mannarino T, Assante R, D'Antonio A, Zampella E, Cuocolo A, Acampa W. Radionuclide Tracers for Myocardial Perfusion Imaging and Blood Flow Quantification. Cardiol Clin. 2023;41(2):141-150. [ DOI:10.1016/j.ccl.2023.01.003] [ PMID] 14. Aydar S, Knobl H, Burchert W, Lindner O. Diagnostic accuracy of artificial intelligence-enabled vectorcardiography versus myocardial perfusion SPECT in patients with suspected or known coronary heart disease. Nuklearmedizin. 2024;63(3):213-218. [ DOI:10.1055/a-2263-2322] [ PMID] [ ] 15. Nazir MS, Bustin Al, Hajhosseiny R, Yazdani M, Ryan M, Vergani V, et al. High-resolution non-contrast free-breathing coronary cardiovascular magnetic resonance angiography for detection of coronary artery disease: validation against invasive coronary angiography. Journal of Cardiovascular Magnetic Resonance. 2022;24(1):26. [ DOI:10.1186/s12968-022-00858-0] [ PMID] [ ] 16. Son MJ, Lee D, Yoo SM, White CS. Diagnostic accuracy of coronary artery occlusion and myocardial perfusion defect on non-gated enhanced chest CT in predicting acute myocardial infarction. Tomography. 2021;7(4):504-12. [ DOI:10.3390/tomography7040043] [ PMID] [ ] 17. Khan JM, Kamioka N, Lisko JC, Perdoncin E, Zhang C, Maini A, et al. Coronary obstruction from TAVR in native aortic stenosis: development and validation of multivariate prediction model. Cardiovascular Interventions. 2023;16(4):415-25. [ DOI:10.1016/j.jcin.2022.11.018] [ PMID] [ ] 18. Randazzo MJ, Elias P, Poterucha TJ, Sharir T, Fish MB, Ruddy TD, et al. Impact of cardiac size on diagnostic performance of single-photon emission computed tomography myocardial perfusion imaging: insights from the REgistry of Fast Myocardial Perfusion Imaging with NExt generation single-photon emission computed tomography. European Heart Journal - Cardiovascular Imaging. 2024. [ DOI:10.1093/ehjci/jeae055] [ PMID] [ ] 19. Capannari TE, Daniels SR, Meyer RA, Schwartz DC, Kaplan S. Sensitivity, specificity and predictive value of two-dimensional echocardiography in detecting coronary artery aneurysms in patients with kawasaki disease. Journal of the American College of Cardiology. 1986;7(2):355-60. [ DOI:10.1016/S0735-1097(86)80505-8] [ PMID] 20. Amini M, Pursamimi M, Hajianfar G, Salimi Y, Saberi A, Mehri-Kakavand G, et al. Machine learning-based diagnosis and risk classification of coronary artery disease using myocardial perfusion imaging SPECT: A radiomics study. Scientific Reports. 2023;13(1):14920. [ DOI:10.1038/s41598-023-42142-w] [ PMID] [ ] 21. Zamorano JL, García-Moll X, Ferrari R, Greenlaw N. Demographic and Clinical Characteristics of Patients With Stable Coronary Artery Disease: Results From the CLARIFY Registry in Spain. Revista Española de Cardiología (English Edition). 2014;67(7):538-44.
https://doi.org/10.1016/j.rec.2013.10.020 [ DOI:10.1016/j.recesp.2013.10.022] [ PMID]
|