1. Kharde V, Sonawane P. Sentiment analysis of twitter data: a survey of techniques. arXiv preprint arXiv:1601.06971. 2016. 2. Barbosa L, Feng J. Robust sentiment detection on twitter from biased and noisy data. InColing 2010: Posters 2010 (pp. 36-44). 3. Covello VT. Best practices in public health risk and crisis communication. Journal of health communication. 2003 Jun 1;8(S1):5-8. [ DOI:10.1080/713851971] [ PMID] 4. Karami A, Shah V, Vaezi R, Bansal A. Twitter speaks: A case of national disaster situational awareness. Journal of Information Science. 2020 Jun;46(3):313-24. [ DOI:10.1177/0165551519828620] 5. Vosoughi S, Roy D, Aral S. The spread of true and false news online. science. 2018;359(6380):1146-51. [ DOI:10.1126/science.aap9559] [ PMID] 6. Keller TR, Klinger U. Social bots in election campaigns: Theoretical, empirical, and methodological implications. Political Communication. 2019 Jan 2;36(1):171-89. [ DOI:10.1080/10584609.2018.1526238] 7. Mao Z, Wang D, Zheng S. Health belief model and social media engagement: a cross-national study of health promotion strategies against COVID-19 in 2020. Frontiers in Public Health. 2023;11:1093648. [ DOI:10.3389/fpubh.2023.1093648] [ PMID] [ ] 8. Kharde V, Sonawane P. Sentiment analysis of twitter data: a survey of techniques. arXiv preprint arXiv:1601.06971. 2016 Jan 26. 9. Geber S, Fretwurst B, Vogler D, Siegen D, Eisenegger M, Friemel T. Norm Setting in Times of Crisis: A Time-Series Analysis of the Dynamics Between Media Reporting and Perceived Norms in the Context of the COVID-19 Vaccination Roll-Out. Mass Communication and Society. 2024, 19:1-25. [ DOI:10.1080/15205436.2024.2389833] 10. Varni A, Thai CL, Jamaleddine S. Using an Instagram campaign to influence knowledge, subjective norms, perceived behavioral control, and behavioral intentions for sustainable behaviors. Frontiers in Psychology. 2024;15:1377211. [ DOI:10.3389/fpsyg.2024.1377211] [ PMID] [ ] 11. Jahanbin K, Rahmanian V. Using Twitter and web news mining to predict COVID-19 outbreak. Asian Pacific Journal of Tropical Medicine. 2020;13:1-3 [ DOI:10.4103/1995-7645.279651] 12. Wang D, Yue S, Wen Y, Wu K, Zhong T, Chen M, Yu Z, Yuan L, Lü G. Unveiling the spatiotemporal propagation patterns of sentiments regarding the Israeli-Palestinian military conflict. Humanities and Social Sciences Communications. 2025;12(1):1-7. [ DOI:10.63313/SSH.2003] 13. Pina JM. Public Opinion in Conflict Situations: A Sentiment Analysis of Tweets About Russia During the War on Ukraine. Defence and Peace Economics. 2025;36(3):292-306. [ DOI:10.1080/10242694.2024.2381911] 14. Hameleers M, Garnier Ortiz M. Risk Perceptions of Misinformation Exposure Across Platforms, Issues, Modalities, and Countries: A Comparative Study Across the Global North and South. The International Journal of Press/Politics. 2024 7:19401612241304050. [ DOI:10.1177/19401612241304050] 15. Caulfield M, Bayar MC, Aske AB. The 'new elites' of X: Identifying the most influential accounts engaged in Hamas/Israel discourse. Center for an informed public, Washington University. 2023. 16. Kim Y, Lim H. Alleviating the Bandwagon Effect of Crisis Misinformation on Social Media: Understanding Social Media Users' Bandwagon Perceptions and the Credibility of Crisis Misinformation to Protect Organizational Reputation. Communication Studies. 2025 Apr 9:1-29. [ DOI:10.1080/10510974.2025.2485368] 17. Gruzd A, Mai P, Soares FB. To Share or Not to Share: Randomized Controlled Study of Misinformation Warning Labels on Social Media. InMultidisciplinary International Symposium on Disinformation in Open Online Media 2024 , 31 (pp. 46-69). Cham: Springer Nature Switzerland. [ DOI:10.1007/978-3-031-71210-4_4]
|